Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 802
Filter
1.
Front Immunol ; 12: 725129, 2021.
Article in English | MEDLINE | ID: mdl-34721387

ABSTRACT

Shigella is the second leading cause of diarrheal diseases, accounting for >200,000 infections and >50,000 deaths in children under 5 years of age annually worldwide. The incidence of Shigella-induced diarrhea is relatively low during the first year of life and increases substantially, reaching its peak between 11 to 24 months of age. This epidemiological trend hints at an early protective immunity of maternal origin and an increase in disease incidence when maternally acquired immunity wanes. The magnitude, type, antigenic diversity, and antimicrobial activity of maternal antibodies transferred via placenta that can prevent shigellosis during early infancy are not known. To address this knowledge gap, Shigella-specific antibodies directed against the lipopolysaccharide (LPS) and virulence factors (IpaB, IpaC, IpaD, IpaH, and VirG), and antibody-mediated serum bactericidal (SBA) and opsonophagocytic killing antibody (OPKA) activity were measured in maternal and cord blood sera from a longitudinal cohort of mother-infant pairs living in rural Malawi. Protein-specific (very high levels) and Shigella LPS IgG were detected in maternal and cord blood sera; efficiency of placental transfer was 100% and 60%, respectively, and had preferential IgG subclass distribution (protein-specific IgG1 > LPS-specific IgG2). In contrast, SBA and OPKA activity in cord blood was substantially lower as compared to maternal serum and varied among Shigella serotypes. LPS was identified as the primary target of SBA and OPKA activity. Maternal sera had remarkably elevated Shigella flexneri 2a LPS IgM, indicative of recent exposure. Our study revealed a broad repertoire of maternally acquired antibodies in infants living in a Shigella-endemic region and highlights the abundance of protein-specific antibodies and their likely contribution to disease prevention during the first months of life. These results contribute new knowledge on maternal infant immunity and target antigens that can inform the development of vaccines or therapeutics that can extend protection after maternally transferred immunity wanes.


Subject(s)
Antibodies, Bacterial/blood , Dysentery, Bacillary/immunology , Dysentery, Bacillary/prevention & control , Immunoglobulin G/blood , Shigella Vaccines/immunology , Adolescent , Adult , Cohort Studies , Female , Humans , Immunity, Maternally-Acquired , Immunoglobulin G/classification , Infant , Infant, Newborn , Malawi , Male , Pregnancy , Shigella flexneri/immunology , Young Adult
2.
Nature ; 599(7884): 290-295, 2021 11.
Article in English | MEDLINE | ID: mdl-34671164

ABSTRACT

Mouse caspase-11 and human caspase-4 and caspase-5 recognize cytosolic lipopolysaccharide (LPS) to induce pyroptosis by cleaving the pore-forming protein GSDMD1-5. This non-canonical inflammasome defends against Gram-negative bacteria6,7. Shigella flexneri, which causes bacillary dysentery, lives freely within the host cytosol where these caspases reside. However, the role of caspase-11-mediated pyroptosis in S. flexneri infection is unknown. Here we show that caspase-11 did not protect mice from S. flexneri infection, in contrast to infection with another cytosolic bacterium, Burkholderia thailandensis8. S. flexneri evaded pyroptosis mediated by caspase-11 or caspase 4 (hereafter referred to as caspase-11/4) using a type III secretion system (T3SS) effector, OspC3. OspC3, but not its paralogues OspC1 and 2, covalently modified caspase-11/4; although it used the NAD+ donor, this modification was not ADP-ribosylation. Biochemical dissections uncovered an ADP-riboxanation modification on Arg314 and Arg310 in caspase-4 and caspase-11, respectively. The enzymatic activity was shared by OspC1 and 2, whose ankyrin-repeat domains, unlike that of OspC3, could not recognize caspase-11/4. ADP-riboxanation of the arginine blocked autoprocessing of caspase-4/11 as well as their recognition and cleavage of GSDMD. ADP-riboxanation of caspase-11 paralysed pyroptosis-mediated defence in Shigella-infected mice and mutation of ospC3 stimulated caspase-11- and GSDMD-dependent anti-Shigella humoral immunity, generating a vaccine-like protective effect. Our study establishes ADP-riboxanation of arginine as a bacterial virulence mechanism that prevents LPS-induced pyroptosis.


Subject(s)
Adenosine Diphosphate Ribose/metabolism , Arginine/metabolism , Bacterial Proteins/metabolism , Caspases, Initiator/metabolism , Immune Evasion , Pyroptosis , Shigella flexneri/pathogenicity , Adenosine Diphosphate/metabolism , Animals , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Female , Immunity, Humoral , Inflammasomes/metabolism , Lipopolysaccharides/pharmacology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , NAD/metabolism , Pyroptosis/drug effects , Shigella Vaccines , Shigella flexneri/immunology , Virulence
3.
PLoS Negl Trop Dis ; 15(10): e0009826, 2021 10.
Article in English | MEDLINE | ID: mdl-34644291

ABSTRACT

No vaccine to protect against an estimated 238,000 shigellosis deaths per year is widely available. S. sonnei is the most prevalent Shigella, and multiple serotypes of S. flexneri, which change regionally and globally, also cause significant disease. The leading Shigella vaccine strategies are based on the delivery of serotype specific O-antigens. A strategy to minimize the complexity of a broadly-protective Shigella vaccine is to combine components from S. sonnei with S. flexneri serotypes that induce antibodies with maximum cross-reactivity between different serotypes. We used the GMMA-technology to immunize animal models and generate antisera against 14 S. flexneri subtypes from 8 different serotypes that were tested for binding to and bactericidal activity against a panel of 11 S. flexneri bacteria lines. Some immunogens induced broadly cross-reactive antibodies that interacted with most of the S. flexneri in the panel, while others induced antibodies with narrower specificity. Most cross-reactivity could not be assigned to modifications of the O-antigen, by glucose, acetate or phosphoethanolamine, common to several of the S. flexneri serotypes. This allowed us to revisit the current dogma of cross-reactivity among S. flexneri serotypes suggesting that a broadly protective vaccine is feasible with limited number of appropriately selected components. Thus, we rationally designed a 4-component vaccine selecting GMMA from S. sonnei and S. flexneri 1b, 2a and 3a. The resulting formulation was broadly cross-reactive in mice and rabbits, inducing antibodies that killed all S. flexneri serotypes tested. This study provides the framework for a broadly-protective Shigella vaccine which needs to be verified in human trials.


Subject(s)
Antibodies, Bacterial/immunology , Shigella Vaccines/immunology , Shigella flexneri/immunology , Animals , Cross Reactions , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Dysentery, Bacillary/prevention & control , Female , Humans , Mice , O Antigens/administration & dosage , O Antigens/genetics , O Antigens/immunology , Rabbits , Serogroup , Shigella Vaccines/administration & dosage , Shigella Vaccines/genetics , Shigella flexneri/classification , Shigella flexneri/genetics , Shigella sonnei/genetics , Shigella sonnei/immunology
4.
Int Immunopharmacol ; 100: 108132, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34508943

ABSTRACT

OBJECTIVES: Shigellosis is one of the infectious diseases causing severe intestinal illness in human beings. Development of an effective vaccine against Shigella is a key to deal with this bacterium. The present study aimed at evaluation of the antibody response as well as the protection of the recombinant chimeric protein containing IpaD, IpaB, StxB, and VirG against Shigella dysentery and flexneri. METHODS: Chimeric protein was expressed and purified by Ni-NTA resin. The identity of the protein was determined by Western blot analysis. Mouse groups were immunized with the recombinant protein and the humoral immune response was measured by Enzyme-Linked Immunosorbent Assay (ELISA). Additionally, neutralization of the bacterial toxin by antibody was assessed by MTT assay. Animal challenge against S.dysentery and S. flexneri was evaluated, as well. RESULTS: Protein expression and purification were confirmed by SDS-PAGE and western blotting. Analysis of the immune responses demonstrated that the antibody responses were higher in the sera of the subcutaneously immunized mice compared to those immunized intraperitoneally. In vitro neutralization analysis indicated that the 1:10000 dilution of the sera had a high ability to neutralize 0.25 ng/µl (CD50) of the toxin on the Vero cell line. Furthermore, the results of the animal challenge showed that the immunized mice were completely protected against 50 LD50 of the bacterial toxin. Immunization also protected 80% of the mice from 10 LD50 by S. flexneri and S.dysentery. In addition, passive immunization conferred 60% protection in the mice against S. flexneri and S.dysentery. Organ burden studies also revealed a significant reduction in infection among the immunized mice. CONCLUSION: This study revealed that the chimeric protein produced inE. colicould be a promising chimeric immunogen candidate against Shigella.


Subject(s)
Dysentery, Bacillary/immunology , Dysentery, Bacillary/therapy , Recombinant Fusion Proteins/immunology , Shiga Toxin/toxicity , Shigella/immunology , Animals , Antibodies, Bacterial/blood , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Chlorocebus aethiops , Dysentery, Bacillary/microbiology , Female , Immunization , Immunization, Passive , Lethal Dose 50 , Liver/pathology , Mice , Mice, Inbred BALB C , Shigella dysenteriae/immunology , Shigella flexneri/immunology , Spleen/pathology , Type III Secretion Systems , Type V Secretion Systems , Vero Cells/drug effects
5.
mSphere ; 6(4): e0012221, 2021 08 25.
Article in English | MEDLINE | ID: mdl-34259559

ABSTRACT

Shigella spp. are a leading cause of diarrhea-associated global morbidity and mortality. Development and widespread implementation of an efficacious vaccine remain the best option to reduce Shigella-specific morbidity. Unfortunately, the lack of a well-defined correlate of protection for shigellosis continues to hinder vaccine development efforts. Shigella controlled human infection models (CHIM) are often used in the early stages of vaccine development to provide preliminary estimates of vaccine efficacy; however, CHIMs also provide the opportunity to conduct in-depth immune response characterizations pre- and postvaccination or pre- and postinfection. In the current study, principal-component analyses were used to examine immune response data from two recent Shigella CHIMs in order to characterize immune response profiles associated with parenteral immunization, oral challenge with Shigella flexneri 2a, or oral challenge with Shigella sonnei. Although parenteral immunization induced an immune profile characterized by robust systemic antibody responses, it also included mucosal responses. Interestingly, oral challenge with S. flexneri 2a induced a distinctively different profile compared to S. sonnei, characterized by a relatively balanced systemic and mucosal response. In contrast, S. sonnei induced robust increases in mucosal antibodies with no differences in systemic responses across shigellosis outcomes postchallenge. Furthermore, S. flexneri 2a challenge induced significantly higher levels of intestinal inflammation compared to S. sonnei, suggesting that both serotypes may also differ in how they trigger induction and activation of innate immunity. These findings could have important implications for Shigella vaccine development as protective immune mechanisms may differ across Shigella serotypes. IMPORTANCE Although immune correlates of protection have yet to be defined for shigellosis, prior studies have demonstrated that Shigella infection provides protection against reinfection in a serotype-specific manner. Therefore, it is likely that subjects with moderate to severe disease post-oral challenge would be protected from a homologous rechallenge, and investigating immune responses in these subjects may help identify immune markers associated with the development of protective immunity. This is the first study to describe distinct innate and adaptive immune profiles post-oral challenge with two different Shigella serotypes. Analyses conducted here provide essential insights into the potential of different immune mechanisms required to elicit protective immunity, depending on the Shigella serotype. Such differences could have significant impacts on vaccine design and development within the Shigella field and should be further investigated across multiple Shigella serotypes.


Subject(s)
Antibodies, Bacterial/immunology , Dysentery, Bacillary/immunology , Immunization/methods , Shigella Vaccines/immunology , Shigella flexneri/immunology , Shigella sonnei/immunology , Dysentery, Bacillary/prevention & control , Human Experimentation/statistics & numerical data , Humans , Serogroup , Shigella Vaccines/administration & dosage , Vaccine Development , Vaccine Efficacy
6.
Appl Environ Microbiol ; 87(19): e0096821, 2021 09 10.
Article in English | MEDLINE | ID: mdl-34319809

ABSTRACT

Shigellosis has become a serious threat to health in many developing countries due to the severe diarrhea it causes. Shigella flexneri 2a is the principal species responsible for this endemic disease. Despite multiple attempts to design a vaccine against shigellosis, no effective vaccine has been developed yet. Lipopolysaccharide (LPS) is both an essential virulence factor and an antigen protective against Shigella, due to its outer domain, termed O-polysaccharide antigen. In the present study, S. flexneri 2a O-polysaccharide antigen was innovatively biosynthesized in Salmonella and attached to core-lipid A via the ligase WaaL, with purified outer membrane vesicles (OMVs) utilized as vaccine vectors. Here, we identified the expression of the heterologous O-antigen and have described the isolation, characterization, and immune protection efficiency of the OMV vaccine. Furthermore, the results of animal experiments indicated that immunization of mice with the OMV vaccine induced significant specific anti-Shigella LPS antibodies in the serum, with similar trends in IgA levels from vaginal secretions and fluid from bronchopulmonary lavage, both intranasally and intraperitoneally. The OMV vaccine derived from both routes of administration provided significant protection against virulent S. flexneri 2a infection, as judged by a serum bactericidal assay, opsonization assay, and challenge test. This vaccination strategy represents a novel and improved approach to control shigellosis by the combination of Salmonella glycosyl carrier lipid bioconjugation with OMVs. IMPORTANCEShigella, the cause of shigellosis or bacillary dysentery, is a major public health concern, especially for children in developing countries. An effective vaccine would control the spread of the disease to some extent. However, no licensed vaccine against Shigella infection in humans has so far been developed. The Shigella O-antigen polysaccharide is effective in stimulating the production of protective antibodies and so could represent a vaccine antigen candidate. In addition, bacterial outer membrane vesicles (OMVs) have been used as antigen delivery platforms due to their nanoscale properties and ease of antigen delivery to trigger an immune response. Therefore, the present study provides a new strategy for vaccine design, combining a glycoconjugated vaccine with OMVs. The design concept of this strategy is the expression of Shigella O-antigen via the LPS synthesis pathway in recombinant Salmonella, from which the OMV vaccine is then isolated. Based on these findings, we believe that the novel vaccine design strategy in which polysaccharide antigens are delivered via bacterial OMVs will be effective for the development and clinical application of an effective Shigella vaccine.


Subject(s)
Bacterial Outer Membrane , Dysentery, Bacillary/prevention & control , O Antigens/administration & dosage , Salmonella typhimurium , Shigella Vaccines/administration & dosage , Shigella flexneri/immunology , Animals , Cell Proliferation , Cytokines/immunology , Dysentery, Bacillary/immunology , Female , Lymphocytes/immunology , Mice, Inbred BALB C , Spleen/cytology
7.
Nat Commun ; 12(1): 3392, 2021 06 07.
Article in English | MEDLINE | ID: mdl-34099666

ABSTRACT

Cells infected with pathogens can contribute to clearing infections by releasing signals that instruct neighbouring cells to mount a pro-inflammatory cytokine response, or by other mechanisms that reduce bystander cells' susceptibility to infection. Here, we show the opposite effect: epithelial cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells. We find that the endoplasmic reticulum stress response is activated in both infected and bystander cells, and this leads to activation of JNK pathway, downregulation of transcription factor E2F1, and consequent reprogramming of microRNA expression in a time-dependent manner. These changes are not elicited by infection with other bacterial pathogens, such as Shigella flexneri or Listeria monocytogenes. Remarkably, the protein HMGB1 present in the secretome of Salmonella-infected cells is responsible for the activation of the IRE1 branch of the endoplasmic reticulum stress response in non-infected, neighbouring cells. Furthermore, E2F1 downregulation and the associated microRNA alterations promote Salmonella replication within infected cells and prime bystander cells for more efficient infection.


Subject(s)
Bystander Effect/genetics , E2F1 Transcription Factor/metabolism , MicroRNAs/metabolism , Salmonella Infections/immunology , Salmonella typhimurium/immunology , Animals , Bystander Effect/immunology , Disease Models, Animal , Down-Regulation/immunology , E2F1 Transcription Factor/genetics , Endoplasmic Reticulum Stress/immunology , Endoribonucleases/metabolism , HMGB1 Protein/metabolism , HeLa Cells , Host-Pathogen Interactions/genetics , Host-Pathogen Interactions/immunology , Humans , Listeria monocytogenes/immunology , MAP Kinase Signaling System/genetics , MAP Kinase Signaling System/immunology , Protein Serine-Threonine Kinases/metabolism , RNA-Seq , Salmonella Infections/genetics , Salmonella Infections/microbiology , Salmonella typhimurium/pathogenicity , Shigella flexneri/immunology , Swine
8.
Elife ; 102021 06 04.
Article in English | MEDLINE | ID: mdl-34085925

ABSTRACT

Defective autophagy is strongly associated with chronic inflammation. Loss-of-function of the core autophagy gene Atg16l1 increases risk for Crohn's disease in part by enhancing innate immunity through myeloid cells such as macrophages. However, autophagy is also recognized as a mechanism for clearance of certain intracellular pathogens. These divergent observations prompted a re-evaluation of ATG16L1 in innate antimicrobial immunity. In this study, we found that loss of Atg16l1 in myeloid cells enhanced the killing of virulent Shigella flexneri (S.flexneri), a clinically relevant enteric bacterium that resides within the cytosol by escaping from membrane-bound compartments. Quantitative multiplexed proteomics of murine bone marrow-derived macrophages revealed that ATG16L1 deficiency significantly upregulated proteins involved in the glutathione-mediated antioxidant response to compensate for elevated oxidative stress, which simultaneously promoted S.flexneri killing. Consistent with this, myeloid-specific deletion of Atg16l1 in mice accelerated bacterial clearance in vitro and in vivo. Pharmacological induction of oxidative stress through suppression of cysteine import enhanced microbial clearance by macrophages. Conversely, antioxidant treatment of macrophages permitted S.flexneri proliferation. These findings demonstrate that control of oxidative stress by ATG16L1 and autophagy regulates antimicrobial immunity against intracellular pathogens.


Subject(s)
Autophagy-Related Proteins/deficiency , Autophagy , Dysentery, Bacillary/microbiology , Immunity, Innate , Macrophages/microbiology , Oxidative Stress , Proteome , Proteomics , Shigella flexneri/pathogenicity , Animals , Autophagy-Related Proteins/genetics , Cells, Cultured , Disease Models, Animal , Dysentery, Bacillary/immunology , Dysentery, Bacillary/metabolism , Host-Pathogen Interactions , Inflammation Mediators/metabolism , Macrophages/immunology , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , Microbial Viability , Shigella flexneri/immunology , Shigella flexneri/metabolism , Virulence
9.
PLoS One ; 16(5): e0252222, 2021.
Article in English | MEDLINE | ID: mdl-34043697

ABSTRACT

INTRODUCTION: Shigellosis, is a leading cause of moderate-to-severe diarrhoea and related mortality in young children in low and middle income countries (LMICs). Knowledge on naturally acquired immunity can support the development of Shigella candidate vaccines mostly needed in LMICs. We aimed to quantify Shigella-specific antibodies of maternal origin and those naturally acquired in Zambian infants. METHODS: Plasma samples collected from infants at age 6, 14 and 52-weeks were tested for Shigella (S. sonnei and S. flexneri 2a) lipopolysaccharide (LPS) antigen specific immunoglobulin G (IgG) and A (IgA) by enzyme-linked immunosorbent assay. RESULTS: At 6 weeks infant age, the IgG geometric mean titres (GMT) against S. sonnei (N = 159) and S. flexneri 2a (N = 135) LPS were 311 (95% CI 259-372) and 446 (95% CI 343-580) respectively. By 14 weeks, a decline in IgG GMT was observed for both S. sonnei to 104 (95% CI 88-124), and S. flexneri 2a to 183 (95% CI 147-230). Both S. sonnei and S. flexneri 2a specific IgG GMT continued to decrease by 52 weeks infant age when compared to 6 weeks. In 27% and 8% of infants a significant rise in titre (4 fold and greater) against S. flexneri 2a and S. sonnei LPS, respectively, was detected between the ages of 14 and 52 weeks. IgA levels against both species LPS were very low at 6 and 14 weeks and raised significantly against S. flexneri 2a and S. sonnei LPS in 29% and 10% of the infants, respectively. CONCLUSION: In our setting, transplacental IgG anti-Shigella LPS is present at high levels in early infancy, and begins to decrease by age 14 weeks. Our results are consistent with early exposure to Shigella and indicate naturally acquired IgG and IgA antibodies to S. flexneri 2a and S. sonnei LPS in part of infants between 14 and 52 weeks of age. These results suggest that a potential timing of vaccination would be after 14 and before 52 weeks of age to ensure early infant protection against shigellosis.


Subject(s)
Antibodies, Bacterial/blood , Dysentery, Bacillary , Immunoglobulin A/blood , Immunoglobulin G/blood , Shigella Vaccines/immunology , Adolescent , Adult , Dysentery, Bacillary/immunology , Dysentery, Bacillary/prevention & control , Female , Humans , Infant , Infant, Newborn , Longitudinal Studies , Male , Shigella flexneri/immunology , Shigella sonnei/immunology , Young Adult , Zambia/epidemiology
10.
EBioMedicine ; 66: 103310, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33862589

ABSTRACT

BACKGROUND: Shigellosis is a major cause of moderate to severe diarrhoea and dysentery in children under 5 years of age in low and middle-income countries. The Flexyn2a vaccine conjugates the O-polysaccharide of Shigella flexneri 2a to Pseudomonas aeruginosa exotoxin A. We describe a Phase 2b proof-of-concept challenge study that evaluated safety, immunogenicity, and efficacy of the Flexyn2a vaccine to protect against shigellosis. METHODS: In this randomized, double blind, placebo-controlled trial, healthy adults were randomized 1:1 to receive Flexyn2a (10 µg) or placebo intramuscularly, twice, 4 weeks apart, followed by challenge 4 weeks later with 1500 colony forming units (CFUs) of S. flexneri 2a strain 2457T. The primary outcome was vaccine-induced protection. S. flexneri 2a lipopolysaccharide (LPS)-specific immune responses were assessed. FINDINGS: Sixty-seven subjects were enrolled, 34 received vaccine and 33 placebo. The vaccine was well tolerated; the majority of adverse events were mild in nature. Thirty vaccinees and 29 placebo recipients received the S. flexneri 2a challenge. Vaccination resulted in a 30.2% reduction in shigellosis compared with placebo (13/30 vs. 18/29; p = 0.11; 95% CI -15 to 62.6). Vaccine efficacy was more robust against severe disease, reaching 51.7% (p = 0.015, 95% CI 5.3 to 77.9) against moderate/severe diarrhoea or dysentery concurrent with fever or severe enteric symptoms and 72.4% (p = 0.07) against more severe diarrhoea (≥10 lose stools or ≥1000 g loose stools/24 h). Vaccinated subjects were less likely to need early antibiotic intervention following challenge (protective efficacy 51.7%, p = 0.01; 95% CI 9 to 76.8). In those who developed shigellosis, vaccinated subjects had a lower disease severity score (p = 0.002) than placebo-recipients. Additionally, LPS-specific serum IgG responses in Flexyn2a recipients were associated with protection against disease (p = 0.0016) and with a decreased shigellosis disease score (p = 0.002). INTERPRETATION: The Flexyn2a bioconjugate vaccine was immunogenic, well tolerated and protected against severe illness after Shigella challenge and is a promising Shigella vaccine construct. We identified a strong association between anti-S. flexneri 2a serum IgG and a reduction in disease outcomes. (Clinicaltrials.gov, NCT02646371.) FUNDING: Funding for this study was through a grant from the Wellcome Trust.


Subject(s)
Dysentery, Bacillary/immunology , Dysentery, Bacillary/prevention & control , Shigella Vaccines/immunology , Shigella/immunology , Adult , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Antibody Specificity/immunology , Dysentery, Bacillary/diagnosis , Female , Humans , Immunoglobulin G/blood , Immunoglobulin G/immunology , Lipopolysaccharides/immunology , Male , Middle Aged , Shigella Vaccines/administration & dosage , Shigella Vaccines/adverse effects , Shigella flexneri/immunology , Treatment Outcome , Vaccination , Young Adult
11.
Pathog Dis ; 79(5)2021 04 24.
Article in English | MEDLINE | ID: mdl-33885766

ABSTRACT

Many cytosolic bacterial pathogens hijack the host actin polymerization machinery to form actin tails that promote direct cell-to-cell spread, enabling these pathogens to avoid extracellular immune defenses. However, these pathogens are still susceptible to intracellular cell-autonomous immune responses that restrict bacterial actin-based motility. Two classes of cytosolic antimotility factors, septins and guanylate-binding proteins (GBPs), have recently been established to block actin tail formation by the human-adapted bacterial pathogen Shigella flexneri. Both septin cages and GBP1 microcapsules restrict S. flexneri cell-to-cell spread by blocking S. flexneri actin-based motility. While septins assemble into cage-like structures around immobile S. flexneri, GBP1 forms microcapsules around both motile and immobile bacteria. The interplay between these two defense programs remains elusive. Here, we demonstrate that GBP1 microcapsules block septin cage assembly, likely by interfering with the function of S. flexneri IcsA, the outer membrane protein that promotes actin-based motility, as this protein is required for septin cage formation. However, S. flexneri that escape from GBP1 microcapsules via the activity of IpaH9.8, a type III secreted effector that promotes the degradation of GBPs, are often captured within septin cages. Thus, our studies reveal how septin cages and GBP1 microcapsules represent complementary host cell antimotility strategies.


Subject(s)
Actins/metabolism , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , GTP-Binding Proteins , Septins/metabolism , Shigella flexneri , Transcription Factors/metabolism , GTP-Binding Proteins/genetics , GTP-Binding Proteins/immunology , GTP-Binding Proteins/metabolism , HeLa Cells , Host-Pathogen Interactions/immunology , Humans , Shigella flexneri/immunology , Shigella flexneri/metabolism , Shigella flexneri/pathogenicity
12.
EBioMedicine ; 66: 103308, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33813141

ABSTRACT

BACKGROUND: Diarrheal diseases are a leading cause of global morbidity and mortality affecting all ages, but especially children under the age of five in resource-limited settings. Shigella is a leading contributor to diarrheal diseases caused by bacterial pathogens and is considered a significant antimicrobial resistance threat. While improvements in hygiene, and access to clean water help as control measures, vaccination remains one of the most viable options for significantly reducing morbidity and mortality. METHODS: Flexyn2a is a bioconjugate vaccine manufactured using novel conjugation methodologies enzymatically linking the O-polysaccharide of S. flexneri 2a to exotoxin A of Pseudomonas aeruginosa. The protective capacity of Flexyn2a was assessed in a controlled human infection model after two intramuscular immunizations. Immune responses pre- and post-immunization and/or infection were investigated and are described here. FINDINGS: Flexyn2a induced lipopolysaccharide (LPS)-specific serum IgG responses post-immunization which were associated with protection against shigellosis. Additionally, several other immune parameters, including memory B cell responses, bactericidal antibodies and serum IgA, were also elevated in vaccinees protected against shigellosis. Immunization with Flexyn2a also induced gut-homing, LPS-specific IgG and IgA secreting B cells, indicating the vaccine induced immune effectors functioning at the site of intestinal infection. INTERPRETATION: Collectively, the results of these immunological investigations provide insights into protective immune mechanisms post-immunization with Flexyn2a which can be used to further guide vaccine development and may have applicability to the larger Shigella vaccine field. FUNDING: Funding for this study was provided through a Wellcome Trust grant.


Subject(s)
Dysentery, Bacillary/immunology , Dysentery, Bacillary/prevention & control , Immunity , Shigella Vaccines/immunology , Shigella flexneri/immunology , Antibodies, Bacterial/immunology , Antibody Specificity/immunology , Humans , Immunoglobulin A/blood , Immunoglobulin A/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Immunoglobulin M/blood , Immunoglobulin M/immunology , Immunologic Memory , Lipopolysaccharides/immunology , Lymphocytes/immunology , Lymphocytes/metabolism , Shigella Vaccines/administration & dosage , Vaccination
13.
Cell Mol Immunol ; 18(4): 878-888, 2021 04.
Article in English | MEDLINE | ID: mdl-33731917

ABSTRACT

Protein N-myristoylation is an important fatty acylation catalyzed by N-myristoyltransferases (NMTs), which are ubiquitous enzymes in eukaryotes. Specifically, attachment of a myristoyl group is vital for proteins participating in various biological functions, including signal transduction, cellular localization, and oncogenesis. Recent studies have revealed unexpected mechanisms indicating that protein N-myristoylation is involved in host defense against microbial and viral infections. In this review, we describe the current understanding of protein N-myristoylation (mainly focusing on myristoyl switches) and summarize its crucial roles in regulating innate immune responses, including TLR4-dependent inflammatory responses and demyristoylation-induced innate immunosuppression during Shigella flexneri infection. Furthermore, we examine the role of myristoylation in viral assembly, intracellular host interactions, and viral spread during human immunodeficiency virus-1 (HIV-1) infection. Deeper insight into the relationship between protein N-myristoylation and innate immunity might enable us to clarify the pathogenesis of certain infectious diseases and better harness protein N-myristoylation for new therapeutics.


Subject(s)
Dysentery, Bacillary/immunology , HIV Infections/immunology , Immunity, Innate , Myristic Acid/chemistry , Protein Processing, Post-Translational , Proteins/chemistry , Dysentery, Bacillary/metabolism , Dysentery, Bacillary/microbiology , HIV/immunology , HIV Infections/metabolism , HIV Infections/microbiology , Humans , Shigella flexneri/immunology
14.
PLoS Negl Trop Dis ; 15(3): e0009231, 2021 03.
Article in English | MEDLINE | ID: mdl-33711056

ABSTRACT

Salmonella and Shigella bacteria are food- and waterborne pathogens that are responsible for enteric infections in humans and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics requires the development of broadly protective therapies. Recently, the needle tip proteins of the type III secretion system of these bacteria were successfully utilized (SipD for Salmonella and IpaD for Shigella) as vaccine immunogens to provide good prophylactic cross-protection in murine models of infections. From these experiments, we have isolated a cross-protective monoclonal antibody directed against a conserved region of both proteins. Its conformational epitope determined by Deep Mutational Scanning is conserved among needle tip proteins of all pathogenic Shigella species and Salmonella serovars, and are well recognized by this antibody. Our study provides the first in vivo experimental evidence of the importance of this common region in the mechanism of virulence of Salmonella and Shigella and opens the way to the development of cross-protective therapeutic agents.


Subject(s)
Antibodies, Monoclonal/therapeutic use , Dysentery, Bacillary/therapy , Salmonella Infections, Animal/therapy , Salmonella typhimurium/immunology , Shigella flexneri/immunology , Type III Secretion Systems/immunology , Animals , Antibodies, Bacterial , Antigens, Bacterial , Dysentery, Bacillary/microbiology , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Salmonella Infections, Animal/microbiology
15.
Int J Mol Sci ; 22(3)2021 Jan 28.
Article in English | MEDLINE | ID: mdl-33525644

ABSTRACT

Recently, generalized modules for membrane antigens (GMMA) technology has been proposed as an alternative approach to traditional glycoconjugate vaccines for O-antigen delivery. Saccharide length is a well-known parameter that can impact the immune response induced by glycoconjugates both in terms of magnitude and quality. However, the criticality of O-antigen length on the immune response induced by GMMA-based vaccines has not been fully elucidated. Here, Shigella and Salmonella GMMA-producing strains were further mutated in order to display homogeneous polysaccharide populations of different sizes on a GMMA surface. Resulting GMMA were compared in mice immunization studies. Athymic nude mice were also used to investigate the involvement of T-cells in the immune response elicited. In contrast with what has been reported for traditional glycoconjugate vaccines and independent of the pathogen and the sugar structural characteristics, O-antigen length did not result in being a critical parameter for GMMA immunogenicity. This work supports the identification of critical quality attributes to optimize GMMA vaccine design and improve vaccine efficacy and gives insights on the nature of the immune response induced by GMMA.


Subject(s)
Bacterial Vaccines/administration & dosage , O Antigens/genetics , Salmonella typhimurium/immunology , Shigella flexneri/immunology , Shigella sonnei/immunology , Animals , Antibodies, Bacterial/analysis , Bacterial Vaccines/immunology , Drug Design , Genetic Engineering , Immunization , Mice , Mice, Nude , Mutation , O Antigens/administration & dosage , O Antigens/immunology , Salmonella typhimurium/genetics , Serum/immunology , Shigella flexneri/genetics , Shigella sonnei/genetics , T-Lymphocytes/immunology
17.
Lancet Infect Dis ; 21(4): 546-558, 2021 04.
Article in English | MEDLINE | ID: mdl-33186516

ABSTRACT

BACKGROUND: Shigella remains in the top four pathogens responsible for moderate to severe diarrhoea in children below 5 years of age. The shigella O-specific polysaccharide (O-SP) is a promising vaccine target. We developed a conjugate vaccine prototype incorporating a unique well defined synthetic oligosaccharide hapten, chemically designed for optimal antigenic, conformational, structural, and functional mimicry of the O-SP from Shigella flexneri 2a (SF2a). We aimed to assess the safety, tolerability, and immunogenicity of this original synthetic oligosaccharide-based vaccine candidate, SF2a-TT15, conceived to drive the antibody response towards the key protective determinants of the native lipopolysaccharide antigen, in a first-in-human phase 1 study. METHODS: We did a first-in-human, dose-escalating, single-blind, observer-masked, randomised, placebo-controlled study at the Clinical Research Center of Tel Aviv Sourasky Medical Center (Israel). Participants were healthy adults aged 18-45 years with low titres of serum SF2a-specific IgG antibodies. 64 eligible participants were assigned to one of two cohorts. 32 participants in each of the two cohorts were randomly assigned via computer-generated algorithm in a stepwise manner to receive the 2 µg (cohort 1) and 10 µg oligosaccharide dose (cohort 2) of the SF2a-TT15 vaccine candidate non-adjuvanted or adjuvanted with aluminium hydroxide (alum) or matching placebos. The vaccine was administered as three single intramuscular injections into the arm, 28 days apart. The primary outcome was the incidence and severity of adverse events, which were assessed in the intention-to-treat safety population analysis including all participants who were randomly assigned and received at least one vaccine or placebo injection. The immunogenicity endpoints were secondary outcomes and were analysed in all participants who were randomly assigned, received all of the assigned injections before the time of the immunogenicity assessment, and provided blood samples for immunological follow-up (per-protocol immunogenicity analysis). The study is registered with ClinicalStudies.gov, NCT02797236 and is completed. FINDINGS: Of 203 volunteers initially screened, 64 participants were enrolled between Sept 20, 2016, and Sept 26, 2017. In each of the two cohorts, 12 participants received the adjuvanted vaccine, 12 received the non-adjuvanted vaccine and eight received the matching placebo (four each). The SF2a-TT15 glycoconjugate was well tolerated at both doses. No serious or severe adverse events occurred. Overall, seven (88%) of eight to 12 (100%) of 12 in each group of volunteers had one adverse event or more after receiving the study agents with the majority of adverse events, 300 (98%) of 307, considered mild in intensity. Of the seven adverse events defined as moderate in severity, one (nausea) was suspected to be related to the vaccine candidate. At all post-immunisation days and for both oligosaccharide doses, whether adjuvanted or not, SF2a-TT15 induced significantly higher serum IgG anti-SF2a lipopolysaccharide geometric mean titres (GMTs) as compared with baseline or with the corresponding GMTs in placebo recipients (p<0·01). After one injection, the non-adjuvanted 10 µg oligosaccharide dose induced a 27-times increase in IgG GMT (5080 vs 189) and the non-adjuvanted 2 µg oligosaccharide dose induced a five-times increase (1411 vs 283), compared with baseline. Alum enhanced the specific IgG response at 2 µg oligosaccharide dose after the third injection (GMTs 3200 vs 1176, p=0.045). INTERPRETATION: SF2a-TT15 was safe and well tolerated and induced high titres of anti-SF2a LPS IgG antibodies. These results support further evaluation of this original synthetic oligosaccharide-protein conjugate vaccine candidate for safety, immunogenicity, and protective efficacy in target populations. FUNDING: The European Union Seventh Framework Programme.


Subject(s)
Dysentery, Bacillary/prevention & control , Immunogenicity, Vaccine , Shigella Vaccines/adverse effects , Shigella flexneri/immunology , Adjuvants, Immunologic/administration & dosage , Adjuvants, Immunologic/adverse effects , Adolescent , Adult , Aluminum Hydroxide/administration & dosage , Aluminum Hydroxide/adverse effects , Aluminum Hydroxide/immunology , Antibodies, Bacterial/blood , Antibodies, Bacterial/immunology , Dose-Response Relationship, Immunologic , Dysentery, Bacillary/immunology , Dysentery, Bacillary/microbiology , Female , Healthy Volunteers , Humans , Injections, Intramuscular , Male , Middle Aged , O Antigens/genetics , O Antigens/immunology , Shigella Vaccines/administration & dosage , Shigella Vaccines/genetics , Shigella Vaccines/immunology , Single-Blind Method , Vaccines, Conjugate/administration & dosage , Vaccines, Conjugate/adverse effects , Vaccines, Conjugate/genetics , Vaccines, Conjugate/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Young Adult
18.
Int J Med Microbiol ; 310(5): 151427, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32654768

ABSTRACT

Shigella flexneri 2a (Sf2a) is one of the most frequently isolated Shigella strains that causes the endemic shigellosis in developing countries. In this study, we used recombinant attenuated Salmonella vaccine (RASV) strains to deliver Sf2a O-antigen and characterized the immune responses induced by the vectored O-antigen. First, we identified genes sufficient for biosynthesis of Sf2a O-antigen. A plasmid containing the identified genes was then introduced into the RASV strains, which were manipulated to produce only the heterologous O-antigen and modified lipid A. After oral immunization of mice, we demonstrated that RASV strains could induce potent humoral immune responses as well as robust CD4+ T-cell responses against Sf2a Lipopolysaccharide (LPS) and protect mice against virulent Sf2a challenge. The induced serum antibodies mediated high levels of Shigella-specific serum bactericidal activity and C3 deposition. Moreover, the IgG+ B220low/int BM cell and T follicular helper (Tfh) cell responses could also be triggered effectively. The live attenuated Salmonella with the modified lipid A delivering Sf2a O-antigen polysaccharide showed the same ability to induce immune responses against Sf2a LPS as the strain with the original lipid A. These findings underscore the potential of RASV delivered Sf2a O-antigen for induction of robust CD4+ T-cell and IgG responses and warrant further studies toward the development of Shigella vaccine candidates with RASV strains.


Subject(s)
CD4-Positive T-Lymphocytes/immunology , Immunity, Humoral , Lipid A/analogs & derivatives , O Antigens/genetics , O Antigens/immunology , Salmonella typhimurium/immunology , Shigella flexneri/immunology , Animals , Antibodies, Bacterial/blood , Female , Genes, Bacterial , Immunoglobulin G/blood , Lipid A/genetics , Lipid A/immunology , Mice , Mice, Inbred BALB C , Salmonella typhimurium/genetics , Shigella Vaccines/genetics , Shigella Vaccines/immunology , Shigella flexneri/genetics , Vaccines, Attenuated/genetics , Vaccines, Attenuated/immunology , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology
19.
mBio ; 11(3)2020 05 19.
Article in English | MEDLINE | ID: mdl-32430466

ABSTRACT

Cell-autonomous immunity relies on the rapid detection of invasive pathogens by host proteins. Guanylate binding proteins (GBPs) have emerged as key mediators of vertebrate immune defense through their ability to recognize a diverse array of intracellular pathogens and pathogen-containing cellular compartments. Human and mouse GBPs have been shown to target distinct groups of microbes, although the molecular determinants of pathogen specificity remain unclear. We show that rapid diversification of a C-terminal polybasic motif (PBM) in primate GBPs controls recognition of the model cytosolic bacterial pathogen Shigella flexneri By swapping this membrane-binding motif between primate GBP orthologs, we found that the ability to target S. flexneri has been enhanced and lost in specific lineages of New World primates. Single substitutions in rapidly evolving sites of the GBP1 PBM are sufficient to abolish or restore bacterial detection abilities, illustrating a role for epistasis in the evolution of pathogen recognition. We further demonstrate that the squirrel monkey GBP2 C-terminal domain recently gained the ability to target S. flexneri through a stepwise process of convergent evolution. These findings reveal a mechanism by which accelerated evolution of a PBM shifts GBP target specificity and aid in resolving the molecular basis of GBP function in cell-autonomous immune defense.IMPORTANCE Many infectious diseases are caused by microbes that enter and survive within host cells. Guanylate binding proteins (GBPs) are a group of immune proteins which recognize and inhibit a variety of intracellular pathogenic microbes. We discovered that a short sequence within GBPs required for the detection of bacteria, the polybasic motif (PBM), has been rapidly evolving between primate species. By swapping PBMs between primate GBP1 genes, we were able to show that specific sequences can both reduce and improve the ability of GBP1 to target intracellular bacteria. We also show that the ability to envelop bacteria has independently evolved in GBP2 of South American monkeys. Taking the results together, this report illustrates how primate GBPs have adapted to defend against infectious pathogens.


Subject(s)
Amino Acid Motifs/genetics , GTP-Binding Proteins/genetics , Shigella flexneri/immunology , Animals , Cell Line , GTP-Binding Proteins/immunology , Gene Knockout Techniques , HeLa Cells , Humans , Phylogeny , Primates , Shigella flexneri/genetics
20.
PLoS Negl Trop Dis ; 14(5): e0008326, 2020 05.
Article in English | MEDLINE | ID: mdl-32463817

ABSTRACT

Salmonella and Shigella species are food- and water-borne pathogens that are responsible for enteric infections in both humans and animals and are still the major cause of morbidity and mortality in the emerging countries. The existence of multiple Salmonella and Shigella serotypes as well as the emergence of strains resistant to antibiotics require the development of broadly protective therapies. Those bacteria utilize a Type III Secretion System (T3SS), necessary for their pathogenicity. The structural proteins composing the T3SS are common to all virulent Salmonella and Shigella spp., particularly the needle-tip proteins SipD (Salmonella) and IpaD (Shigella). We investigated the immunogenicity and protective efficacy of SipD and IpaD administered by intranasal and intragastric routes, in a mouse model of Salmonella enterica serotype Typhimurium (S. Typhimurium) intestinal challenge. Robust IgG (in all immunization routes) and IgA (in intranasal and oral immunization routes) antibody responses were induced against both proteins. Mice immunized with SipD or IpaD were protected against lethal intestinal challenge with S. Typhimurium or Shigella flexneri (100 Lethal Dose 50%). We have shown that SipD and IpaD are able to induce a cross-protection in a murine model of infection by Salmonella and Shigella. We provide the first demonstration that Salmonella and Shigella T3SS SipD and IpaD are promising antigens for the development of a cross-protective Salmonella-Shigella vaccine. These results open the way to the development of cross-protective therapeutic molecules.


Subject(s)
Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Cross Protection , Dysentery, Bacillary/prevention & control , Membrane Proteins/immunology , Salmonella Infections/prevention & control , Salmonella Vaccines/immunology , Shigella Vaccines/immunology , Administration, Intranasal , Administration, Oral , Animals , Antibodies, Bacterial/analysis , Disease Models, Animal , Female , Immunoglobulin A/analysis , Immunoglobulin G/analysis , Mice, Inbred BALB C , Salmonella Vaccines/administration & dosage , Salmonella typhimurium/immunology , Shigella Vaccines/administration & dosage , Shigella flexneri/immunology , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...